کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
9480737 | 1326772 | 2005 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A modeling study of the dynamics of pore water seepage from intertidal marsh sediments
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
زمین شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A numerical boundary integral equation model has been used to simulate tidally driven transient variations in pore water seepage from salt marsh sediments into tidal channels and its subsequent recharge by tidal inundation. In general the results show that the maximum seepage discharge occurs at or near the intersection of the creek bank and the channel water surface. Over a tidal cycle typically two-thirds of the total seepage discharge occurs through the creek bank with only about a third discharging from the channel bottom. Of the creek-bank discharge up to a third occurs through the seepage face that develops above the tide line at tidal stages below mean tide. These results indicate that placement of seepage meters only on the channel bottom will not give samples or measures representative of the total seepage. Of the total recharge only about 5% occurs through the upper part of the creek bank with the remainder infiltrating vertically through the marsh platform during early stages of tidal submergence. For the platform recharge about 80% occurs within 3Â m of the creek bank. Thus, most of the water that seeps out of marsh sediments is derived from sediments that lie within several meters of the creek bank and accordingly has had a relatively short residence (one to two years) in the marsh. Compared to the distal portion of the marsh this relatively rapid flushing may enhance the productivity of Spartina alterniflora in the creek-bank environment and control the differential generation of radium quartet isotopes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Estuarine, Coastal and Shelf Science - Volume 62, Issue 4, March 2005, Pages 691-698
Journal: Estuarine, Coastal and Shelf Science - Volume 62, Issue 4, March 2005, Pages 691-698
نویسندگان
Leonard Robert Gardner,