کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
10801885 1055647 2005 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2 +-release channel
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2 +-release channel
چکیده انگلیسی
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) type 2 (IP3R2) is an intracellular Ca2 +-release channel located on the endoplasmic reticulum (ER). IP3R2 is characterized by a high sensitivity to both IP3 and ATP and is biphasically regulated by Ca2 +. Furthermore, IP3R2 is modulated by various protein kinases. In addition to its regulation by protein kinase A, IP3R2 forms a complex with adenylate cyclase 6 and is directly regulated by cAMP. Finally, in the ER, IP3R2 is less mobile than the other IP3R isoforms, while its functional properties appear dominant in heterotetramers. These properties make the IP3R2 a Ca2 + channel with exquisite properties for setting up intracellular Ca2 + signals with unique characteristics. IP3R2 plays a crucial role in the function of secretory cell types (e.g. pancreatic acinar cells, hepatocytes, salivary gland, eccrine sweat gland). In cardiac myocytes, the role of IP3R2 appears more complex, because, together with IP3R1, it is needed for normal cardiogenesis, while its aberrant activity is implicated in cardiac hypertrophy and arrhythmias. Most importantly, its high sensitivity to IP3 makes IP3R2 a target for anti-apoptotic proteins (e.g. Bcl-2) in B-cell cancers. Disrupting IP3R/Bcl-2 interaction therefore leads in those cells to increased Ca2 + release and apoptosis. Intriguingly, IP3R2 is not only implicated in apoptosis but also in the induction of senescence, another tumour-suppressive mechanism. These results were the first to unravel the physiological and pathophysiological role of IP3R2 and we anticipate that further progress will soon be made in understanding the function of IP3R2 in various tissues and organs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research - Volume 1853, Issue 9, September 2015, Pages 1992-2005
نویسندگان
, , , ,