کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2550775 1560586 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
BNIP3 promotes calcium and calpain-dependent cell death
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
BNIP3 promotes calcium and calpain-dependent cell death
چکیده انگلیسی

AimsLoss of cardiac muscle by programmed cell death contributes to the progression of ischemic heart disease. Hypoxia, metabolite waste buildup and energy depletion are components of ischemia which may initiate caspase dependent and independent cell death pathways. Previous work from our laboratory has shown that combined hypoxia with acidosis, a hallmark of ischemia promotes cardiac myocyte injury with increasing severity as the pH declines. Hypoxia-acidosis was demonstrated to activate the pro-apoptotic Bcl-2 protein BNIP3 which initiated opening of the mitochondrial permeability transition pore and cell death in the absence of caspase activation. Because calpains are known to contribute to ischemic myocardial damage in some models, we hypothesized that they are intermediates in the BNIP3-mediated death caused by hypoxia-acidosis.Main methodsNeonatal rat cardiac myocytes were subjected to hypoxia with and without acidosis and the contribution of calpains to hypoxia-acidosis cell death determined.Key findingsHere we report that the death pathway activated by hypoxia-acidosis is driven by a combination of calcium-activated calpains and pro-death factors (DNases) secreted by the mitochondria. Cytochrome c accumulated in the cytoplasm during hypoxia-acidosis but caspase activity was repressed through a calpain-dependent process that prevents the cleavage of procaspase 3. Calpain inhibitors provide vigorous protection against hypoxia-acidosis-induced programmed death. Knockdown of BNIP3 with siRNA prevented calpain activation confirming a central role of BNIP3 in this pathway.SignificanceThe results implicate BNIP3 and calpain as dependent components of cardiac myocyte death caused by hypoxia-acidosis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Life Sciences - Volume 142, 1 December 2015, Pages 26–35
نویسندگان
, , ,