کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4684926 1635461 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Earthflow sediment production and Holocene sediment record in a large Apennine catchment
ترجمه فارسی عنوان
تولید رسوبات سیاره و رسوب رسوبات هولوسن در حوضه آبریز بزرگ
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی

Landscape evolution in active mountain chains can be dominated by gravitational slope movements. This is observed in a large portion of the Reno river catchment, Apennines, Italy, where weak rocks, such as clayshales, are subject to earthflows that control hillslope morphology and supply sediments to the channel network. In this paper, we evaluate the sediment flux generated by earthflows and compare it with Holocene-averaged deposition rates to assess the contribution of mass movements to landscape evolution. Present-day hillslope sediment flux is estimated by combining measured displacement rates (72 inclinometers) and spatial attributes of earthflows and historical frequency of reactivations. Averaged sediment yield (~ 1.6 x 103 t/km2/yr) compares well with similar studies on earthflow-dominated landscapes, despite notable differences in methodology.In the study area, the connectivity between hillslopes and the stream network is well developed and no significant sediment sinks influence the sediment transport processes. We document best estimates of regional sediment fluxes and related uncertainties, based on available data. Coarse limestone fragments, present in the clayshales, are used as a natural sediment tracer to allow a comparison with sedimentation rates taking place at the mouth of the intramontane catchment. Here, available borehole logs, 14C datings and stratigraphic correlations of the alluvial fan are used to obtain an estimate of the deposition that took place during Holocene times. Taking also into account the role of solute transport, sedimentation rates are compared to earthflow sediment production rates. Results show a good agreement and demonstrate that earthflows are the primary mass wasting process in these weak rock lithologies.We document best estimates of regional sediment fluxes and related uncertainties. Present earthflow sediment production outpaces Holocene-averaged sedimentation rates by a factor of two. The gap between sediment production and deposition can be partly justified by uncertainties associated with our estimates and by time-scale differences. With this respect, the dynamic equilibrium between erosion and deposition, is likely affected by intra-Holocene oscillations at a short time scale (10 to 1 ky) attributable to climate variability. Terraced deposits documenting sedimentary episodes would also support such interpretation.


► We document earthflow spatial attributes, geometry and displacement rates.
► We estimate earthflow sediment production rate on a regional basis.
► Earthflows are the primary erosion process in weak rock lithologies.
► Present hillslope sediment production equals or exceeds Holocene sedimentation rates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geomorphology - Volume 188, 15 April 2013, Pages 42–53
نویسندگان
, , , , ,