کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5116048 | 1485146 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classifying building occupancy using building laws and geospatial information: A case study in Bangkok
ترجمه فارسی عنوان
طبقه بندی اشغال ساختمان با استفاده از قوانین ساختمان و اطلاعات جغرافیایی: مطالعه موردی در بانکوک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
BMABuilding classificationPOIALOSNIRDSMLight detection and ranging - تشخیص نور و محدودهGIS - سامانه اطلاعات جغرافیاییGeographic information system - سیستم اطلاعات جغرافیاییnormalized difference vegetation index - شاخص تنوع گیاه شناسی نرمال شدهNDVI - شاخص نرمالشده تفاوت پوشش گیاهی LiDAR - لیدار Near infrared - مادون قرمز نزدیکDigital surface model - مدل سطح دیجیتالPrism - منشورBuilding inventory - موجودی ساختمانPoints of interest - نقاط مورد علاقه
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فیزیک زمین (ژئو فیزیک)
چکیده انگلیسی
Classifying building occupancy types helps build inventory databases, which are important in disaster management. These databases are used to estimate disaster loss and vulnerable to disaster. Oftentimes, this information is gathered via remote sensing data, which can help determine the shape of buildings. However, in order to be helpful, such records require precise occupancy information to support pre-disaster preparation and post-disaster recovery planning. Collecting this information is time-consuming and costly, especially in developing countries with limited resources, such as Thailand. This study offers a potential solution to these hurdles, using a combination of building construction laws and regulations on building occupancy and geospatial data to develop a new methodology for developing a database of building occupancy classification data. The results reveal that this method is effective in classifying urban building occupancy, with more than 75% overall accuracy. Therefore, these methods can be useful in the disaster management of national or local governments in countries where the means to collect such data is limited.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Disaster Risk Reduction - Volume 24, September 2017, Pages 419-427
Journal: International Journal of Disaster Risk Reduction - Volume 24, September 2017, Pages 419-427
نویسندگان
Chomchanok Arunplod, Masahiko Nagai, Kiyoshi Honda, Pennung Warnitchai,