کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5780941 | 1635359 | 2017 | 18 صفحه PDF | دانلود رایگان |
- During the Holocene, NW Himalaya experienced four major phases of floods.
- Monsoon and westerlies interaction during negative Arctic and north Atlantic oscillations implicated.
- The floods caused by landslide lake outburst in the Higher and trans-Himalaya.
- Broad synchronicity between the Himalayan and the mid-latitude floods observed.
The present study in the middle Satluj valley explores the sedimentary records of past floods with an objective to understand the climatic processes responsible for their genesis. Based on lithostratigraphy, sedimentology, and grain size variability, 25 flood events are identified. The geochemical data indicate that the flood sediments were mostly generated and transported from the higher Himalayan crystalline and the trans-Himalaya. Our study suggests that the floods were generated by Landslide Lake Outburst Floods (LLOFs) during extreme precipitation events. However, the existing database does not allow us to negate the contribution from Glacial Lake Outburst Floods (GLOFs). Field stratigraphy supported by optical chronology indicates four major flood phases that are dated to 13.4-10.4, 8.3-3.6, 2.2-1.4, and < 1.4 ka (kilo-annum). These phases correspond to the cooler and less wet conditions and broadly correlate with the phases of negative Arctic Oscillation (â AO) and negative North Atlantic Oscillation (â NAO). Thus, implying coupling between the moisture-laden monsoon circulation and southward penetrating mid-latitude westerly troughs for extreme precipitation events and consequent LLOFs. Additionally, a broad synchronicity in Holocene floods between the western Himalaya and across the mid-latitudinal region (30°N-40°N) suggests a synoptic scale Arctic and Atlantic climate variability.
Journal: Geomorphology - Volume 290, 1 August 2017, Pages 317-334