کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6074963 | 1203491 | 2016 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Serum miR-16: A Potential Biomarker for Predicting Melanoma Prognosis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
امراض پوستی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Melanoma is among the most malignant cancers with notorious aggressiveness, and its prognosis is greatly influenced by progression status. Serum microRNAs are small noncoding RNAs with high stability and easy accessibility in human blood. Their expression profiles are frequently dysregulated in cancers; hence, levels of serum microRNAs may reflect progression status and thus predict melanoma prognosis. In a hospital based case-control study, we found a significant reduction of serum miR-16 level in melanoma patients compared with cancer-free controls (P < 0.001). In addition, serum miR-16 level markedly decreased in melanoma patients with increased tumor thickness, occurrence of ulceration, and advanced American Joint Committee on Cancer stages, and was highly correlated with tissue Ki-67 expression (r = -0.521, P < 0.0001). Kaplan-Meier analysis and Cox proportional hazards regression analysis revealed a prognostic role of serum miR-16 (hazard ratio 2.49, 95% confidence interval 1.10-5.63, P = 0.028), which independently evaluated patients' survival outcome. Finally, the suppressive role of miR-16 in melanoma growth was validated both in vitro and in vivo. In conclusion, we demonstrated that serum miR-16 is a potential biomarker for predicting melanoma prognosis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Investigative Dermatology - Volume 136, Issue 5, May 2016, Pages 985-993
Journal: Journal of Investigative Dermatology - Volume 136, Issue 5, May 2016, Pages 985-993
نویسندگان
Sen Guo, Weinan Guo, Shuli Li, Wei Dai, Nan Zhang, Tao Zhao, Huina Wang, Jingjing Ma, Xiuli Yi, Rui Ge, Gang Wang, Tianwen Gao, Chunying Li,