کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6431607 1635385 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transferability of regional permafrost disturbance susceptibility modelling using generalized linear and generalized additive models
ترجمه فارسی عنوان
انتقال قابلیت مدل سازی حساسیت ناشی از اختلال مراتع منطقه ای با استفاده از مدل های افزایشی خطی و عمومی تعمیم یافته
کلمات کلیدی
اختلال فراوانی، نقشه های حساس قابل انتقال، مدل خطی افزایشی عمومی و تعمیم یافته،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- Disturbance susceptibility models accurately identified disturbance prone areas.
- The GLM modelling approach was more transferable than the GAM (ma).
- Larger sample sizes with greater terrain variability improve model transferability.
- Regional terrain attributes are important for permafrost disturbance initiation.

To effectively assess and mitigate risk of permafrost disturbance, disturbance-prone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape characteristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Peninsula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed locations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) > 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Additionally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results indicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of disturbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geomorphology - Volume 264, 1 July 2016, Pages 95-108
نویسندگان
, , , ,