کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6432591 1635435 2014 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models
چکیده انگلیسی


- Multiresolution segmentation is tested for delimiting drumlins in synthetic DEMs.
- Drumlins may be delimited by individual terrain segments.
- Recommendations for optimizing terrain-based drumlin delimitation are given.
- Ideal terrain derivatives are regional, derived from a filtered DEM, and normalized.
- Recovery rates are similar to those achieved by experts in manual interpretation.

Mapping or “delimiting” landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the reliability, validity and applicability of results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geomorphology - Volume 214, 1 June 2014, Pages 452-464
نویسندگان
, , ,