کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7620601 | 1494503 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Simplified tea classification based on a reduced chemical composition profile via successive projections algorithm linear discriminant analysis (SPA-LDA)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
Magnesium (PubChem CID: 5462224)Gallic acid (PubChem CID: 370) - اسید گالیک (PubChem CID: 370)Tea leaves - برگ های چایFood analysis - تجزیه و تحلیل مواد غذاییFood composition - ترکیب مواد غذاییTea infusions - تزریق چایClassification - طبقه بندیCaffeine (PubChem CID: 2519) - کافئین (PubChem CID: 2519)Camellia sinensis - کاملیا سیننسیس
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, several possible approaches for simultaneous discrimination of teas based on a linear discriminant analysis with variables selected by the successive projections algorithm (SPA-LDA), featuring selection from the chemical composition according to variety (black or green tea) and geographical origin (Argentina or Sri Lanka), are explored. Chemical composition (moisture, ash, caffeine, fluoride, polyphenols, and 15 elements from both tea leaves and infusions) was used as input data for identification of the differentiating characteristics of tea samples. Thus, a strategy that allows tea discrimination using a reduced number of chemical parameters was developed. SIMCA (soft independent modeling of class analogy) and PLS-DA (partial least squares-discriminant analysis) were used along with SPA-LDA for comparison. The elemental fingerprint (chemical signature) can be used for identifying the variety and origin of the tea, and SPA-LDA provided the most successful result (100% correct classification), despite having selected just three chemical parameters (namely K, Al, and Mg). The result is extremely positive from the viewpoint of chemical analyses, because quantifications made using fewer elements naturally provide simpler, faster and less expensive methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Food Composition and Analysis - Volume 39, May 2015, Pages 103-110
Journal: Journal of Food Composition and Analysis - Volume 39, May 2015, Pages 103-110
نویسندگان
Paulo Henrique Gonçalves Dias Diniz, Marcelo Fabián Pistonesi, Mónica Beatriz Alvarez, Beatriz Susana Fernández Band, Mário César Ugulino de Araújo,