کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
8893837 1629384 2019 12 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral features extraction for estimation of soil total nitrogen content based on modified ant colony optimization algorithm
ترجمه فارسی عنوان
استخراج ویژگی های طیفی برای تخمینی از محتوای کل نیتروژن خاک بر اساس الگوریتم بهینه سازی کلون های مورچه اصلاح شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی
Nondestructive and rapid estimation of soil total nitrogen (TN) content by using near-infrared spectroscopy plays a crucial role in agriculture. The obtained original spectrum, however, presents several disadvantages, such as high redundancy, large computation, and complex model, because it generally processes a large amount of data. This study aimed to determine soil TN content-sensitive wavebands with high information quality, considerable predictive ability, and low redundancy. This paper proposes an evaluation criterion in selecting sensitive wavebands based on three factors, namely, degree of relevance with target variables, representative ability of the entire spectral information, and redundancy of the selected wavebands. Based on these three factors, two methods, namely, mutual information (MI) algorithm and the combination of ant colony optimization (ACO) and MI, were innovatively developed to identify soil TN content-sensitive wavebands. After the analysis and comparison, a set of wavelengths, including 943, 1004, 1097, 1351, 1550, 1710, 2123, and 2254 nm, using the ACO-MI combined method was selected as the soil TN content-sensitive wavebands to estimate the TN content of soil samples, under four soil types, collected from different regions. The partial least squares (PLS) models based on full-spectral information, multiple linear regression (MLR) models and support vector machine (SVM) regression models based on the eight selected wavelengths for soil TN content were established separately. After the comparison, the MLR and SVM models achieved higher accuracies than the PLS models based on the full spectral information. In addition, the SVM models got the best results. In the calibration group, the coefficients of determination (R2) was 0.989, and the root mean square errors (RMSE) of calibration was 0.078 g/kg. In the validation group, the R2 was 0.96, and the RMSE of prediction was 0.219 g/kg. The residual predictive deviation (RPD) was 5.426. For the soil samples with TN content in the range of 0-1 g/kg, the detection precision also reached a high level. Therefore, the eight sensitive wavebands selected through the ACO-MI method performed good mechanism, universality and predictive ability in soil TN content estimation. The ACO-MI method would be valuable for soil sensing in precision agriculture.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geoderma - Volume 333, 1 January 2019, Pages 23-34
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت