کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8910734 1637925 2018 43 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study
چکیده انگلیسی
Magnetotactic bacteria (MTB) produce intracellular, membrane-bounded magnetite [Fe(II)Fe(III)2O4] crystals in a genetically controlled way. They are ubiquitous in aquatic environments, and have been proposed to represent some of the most ancient biomineralizing organisms on Earth. Although tremendous advances have been made in constraining the mechanisms of magnetite formation in MTB, the precise biomineralization pathways are still a matter of debate. To further constrain the processes of Fe uptake and magnetite precipitation in MTB, Fe stable isotope measurements were carried out with the magnetotactic strain AMB-1 cultivated with Fe(III), Fe(II) or mixed Fe(III)/Fe(II) species in the growth media. The Fe isotope compositions of growth media before and after AMB-1 cultures, bacterial lysates (i.e. cells devoid of magnetite) and magnetite samples were measured. Single valence Fe(III) or Fe(II) growth media after AMB-1 cultures showed depletion in heavy Fe isotopes by 0.2 to 1.5‰ (δ56Fe), relative to the initial Fe source. Contrastingly, heavy Fe isotopes accumulated in the growth media supplemented with mixed Fe(III)/Fe(II) sources, with enrichment up to 0.25‰. These results support a preferential bacterial uptake of Fe(II) when both Fe(III) and Fe(II) are bioavailable. Bacterial lysates contained at least 50% of the total cellular Fe; thus, magnetite was not the main Fe reservoir in AMB-1 under the experimental conditions investigated in this study. In all cultures, bacterial lysates δ56Fe were 0.4 to 0.8‰ higher than the initial Fe sources, while magnetite δ56Fe were 1.2 to 2.5‰ lower. This depletion in heavy Fe isotopes of magnetite can be explained by partial reduction of Fe(III) to Fe(II) within the cell and subsequent magnetite precipitation. The data also show mass-independent fractionations (MIF) in odd (57Fe) but not in even (54Fe, 56Fe, 58Fe) isotopes, expressed mainly in magnetite crystals, and supporting a magnetic isotope effect on 57Fe. Bacterial Fe uptake and MIF patterns suggest that Fe(II) species can freely exchange between the intracellular and external media. Based on these observations, an integrative biogeochemical model for Fe uptake, cellular trafficking, and magnetite precipitation in AMB-1 is presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geochimica et Cosmochimica Acta - Volume 232, 1 July 2018, Pages 225-243
نویسندگان
, , , , , , , , , , , , ,