کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
907332 | 1472912 | 2009 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Effects of Etanercept and Minocycline in a rat model of spinal cord injury
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب سلولی و مولکولی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Loss of function is usually considered the major consequence of spinal cord injury (SCI). However, pain severely compromises the quality of life in nearly 70% of SCI patients. The principal aim of this study was to assess the contribution of Tumor necrosis factor α (TNF-α) to SCI pain. TNF-α blockers have already been successfully used to treat inflammatory disorders but there are few studies on its effect on neuropathic pain, especially following SCI. Following T13 spinal cord hemisection, we examined the effects on mechanical allodynia and microglial activation of immediate and delayed chronic intrathecal treatment with etanercept, a fusion protein blocker of TNF-α. Immediate treatment (starting at the time of injury) with etanercept resulted in markedly reduced mechanical allodynia 1, 2, 3 and 4 weeks after SCI. Delayed treatment had no effect. Immediate etanercept treatment also reduced spinal microglial activation assessed by OX-42 immunostaining, a putative marker of activated microglia. To assess whether the effects of etanercept were mediated via decreased microglial activation, we examined the effects of the microglial inhibitor, minocycline which significantly reduced the development of pain behaviours at 1 and 2 weeks after SCI compared to saline treatment. Minocycline also significantly reduced microglial OX-42 expression. Furthermore, minocycline decreased the expression of noxious-stimulation-induced c-Fos, suggesting an effect on evoked neuronal activity. This study demonstrates that TNF-α plays an important role in the establishment of neuropathic pain following SCI, seemingly dependent on microglial activation. Pharmacological targeting of TNF-α may offer therapeutic opportunities for treating SCI pain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Pain - Volume 13, Issue 7, August 2009, Pages 673-681
Journal: European Journal of Pain - Volume 13, Issue 7, August 2009, Pages 673-681
نویسندگان
Fabien Marchand, Christoforos Tsantoulas, Dalbinder Singh, John Grist, Anna K. Clark, Elizabeth J. Bradbury, Stephen B. McMahon,