کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5780852 | 1413842 | 2017 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluating fuzzy operators of an object-based image analysis for detecting landslides and their changes
ترجمه فارسی عنوان
ارزیابی اپراتورهای فازی یک تجزیه و تحلیل تصویر مبتنی بر شیء برای تشخیص زمینی لغزش و تغییرات آن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تجزیه و تحلیل تصویر مبتنی بر شی، طبقه بندی مبتنی بر قانون فازی، نظارت بر محیط زیست، تعریف زمین لغزش، تشخیص تغییر، ایران،
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
چکیده انگلیسی
This article presents a method of object-based image analysis (OBIA) for landslide delineation and landslide-related change detection from multi-temporal satellite images. It uses both spatial and spectral information on landslides, through spectral analysis, shape analysis, textural measurements using a gray-level co-occurrence matrix (GLCM), and fuzzy logic membership functionality. Following an initial segmentation step, particular combinations of various information layers were investigated to generate objects. This was achieved by applying multi-resolution segmentation to IRS-1D, SPOT-5, and ALOS satellite imagery in sequential steps of feature selection and object classification, and using slope and flow direction derivatives from a digital elevation model together with topographically-oriented gray level co-occurrence matrices. Fuzzy membership values were calculated for 11 different membership functions using 20 landslide objects from a landslide training data. Six fuzzy operators were used for the final classification and the accuracies of the resulting landslide maps were compared. A Fuzzy Synthetic Evaluation (FSE) approach was adapted for validation of the results and for an accuracy assessment using the landslide inventory database. The FSE approach revealed that the AND operator performed best with an accuracy of 93.87% for 2005 and 94.74% for 2011, closely followed by the MEAN Arithmetic operator, while the OR and AND (*) operators yielded relatively low accuracies. An object-based change detection was then applied to monitor landslide-related changes that occurred in northern Iran between 2005 and 2011. Knowledge rules to detect possible landslide-related changes were developed by evaluating all possible landslide-related objects for both time steps.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geomorphology - Volume 293, Part A, 15 September 2017, Pages 240-254
Journal: Geomorphology - Volume 293, Part A, 15 September 2017, Pages 240-254
نویسندگان
Bakhtiar Feizizadeh, Thomas Blaschke, Dirk Tiede, Mohammad Hossein Rezaei Moghaddam,