کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7279696 1473899 2018 62 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Balasubramide derivative 3C modulates microglia activation via CaMKKβ-dependent AMPK/PGC-1α pathway in neuroinflammatory conditions
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ایمونولوژی
پیش نمایش صفحه اول مقاله
Balasubramide derivative 3C modulates microglia activation via CaMKKβ-dependent AMPK/PGC-1α pathway in neuroinflammatory conditions
چکیده انگلیسی
Neuroinflammation plays a vital role in the pathological process of cerebral ischemic stroke, but currently there is no effective treatment. After ischemia, microglia-produced proinflammatory mediator expression contributes to the aggravation of neuroinflammation, while anti-inflammatory activation of microglia develops an anti-neuroinflammatory effect via secretion of anti-inflammatory factor. Promoting the anti-inflammatory activation of microglia might be an effective treatment of stroke. Previously, we discovered one derivative of the natural product (+)-balasubramide, compound 3C, that exhibits a remarkably anti-neuroinflammatory effect in vitro with unknown mechanisms. Thus in this study, we aimed to clarify its molecular mechanisms and determine whether compound 3C has a neuroprotective effect after ischemia via regulation on microglial inflammation. We found that compound 3C promoted the anti-inflammatory mediator expression and reduced the proinflammatory mediator expression in LPS-stimulated BV2 cells and mouse primary microglia cells, which were reversed by AMP-activated protein kinase (AMPK) inhibition or AMPK upstream calmodulin-dependent protein kinase kinase beta (CaMKKβ) inhibition. Compound 3C also prevented LPS-stimulated JNK activation and enhanced PGC-1α activation in microglia, which was attenuated by AMPK inhibition. Additionally, compound 3C ameliorated depressive behaviors in LPS-induced neuroinflammatory mice by promoting the anti-inflammatory activation of microglia. Furthermore, we found that compound 3C markedly reduced brain infarct volume, improved the neurological deficit in rats with ischemia and reduced the activated microglia/macrophage cells in the ischemic area, which concomitantly enhanced the anti-inflammatory mediator expression. A mechanistic study showed that the compound 3C-mediated activation of CaMKKβ, AMPK and PGC-1α is involved in the anti-neuroinflammatory and neuroprotective effects of 3C in the brain of LPS-treated mice and ischemic rats. Taken together, our results show that compound 3C could suppress neuroinflammation in vitro and in vivo by modulating microglial activation state through the CaMKKβ-dependent AMPK/PGC-1α signaling pathway, and maybe further be developed as a promising new drug candidate for the treatment of brain disorders such as stroke associated with brain inflammation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain, Behavior, and Immunity - Volume 67, January 2018, Pages 101-117
نویسندگان
, , , , , , , , , ,