کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8293659 1536747 2018 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro
چکیده انگلیسی
The contribution of microglial activation to oligodendrocyte precursor cell (OPC) damage in the brain is considered to be a principal pathophysiological feature of periventricular leukomalacia (PVL). Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent reactive oxygen species (ROS) produced in microglia has been shown to be significantly toxic to OPCs. The voltage-gated proton channel Hv1 is selectively expressed in microglia and is essential for NOX-dependent ROS production in the central nervous system. This study aimed to investigate the effects of microglial Hv1 deficiency on the protection of OPCs from oxygen-glucose deprivation (OGD)-induced injury in vitro. In the present study, the levels of OGD-induced ROS and pro-inflammatory cytokine production were dramatically lower in Hv1-deficient microglia (Hv1−/−) than in wild-type (WT) microglia. Following OGD, OPCs co-cultured with WT microglia had increased apoptosis and decreased proliferation and maturation, while those co-cultured with Hv1−/− microglia had attenuated apoptosis and greater proliferation and differentiation. Furthermore, the attenuated damage and enhanced regeneration of OPCs were associated with decreases in extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. These results indicate that the protective effects of Hv1 deficiency on OPCs are due to the suppression of ROS and pro-inflammatory cytokine production in microglia. We thus suggest that the microglial proton channel Hv1 may be a potential therapeutic target in PVL.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochemical and Biophysical Research Communications - Volume 498, Issue 1, 25 March 2018, Pages 1-8
نویسندگان
, , , , ,